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State synchronization of n-dimensional
chaotic systems via the single-input
robust adaptive sliding mode control

HoNcvy1 CHEN?, SHIHHUNG KA0O®?, KUNCHIEH
WANG?, HUICUN SHEN*, CHICHING YANG®®

Abstract. The novel single input, two-level robust adaptive sliding mode control is introduced
to achieve the state synchronization for two the same type of n-dimensional nonlinear chaotic
systems in this study. Unlike directly eliminated the nonlinear items by the developed control
law in the literature, the proposed control law is not only required the known bounds of system
uncertainties and external disturbances in prior but also with time varying feedback gains can
compensate nonlinear dynamics of the synchronous error system. Meanwhile, these feedback gains
are not to be determined in advance but updated by the adaptive rules. Sufficient conditions are
provided to guarantee the stable synchronization in the sense of the Lyapunov stability. In addition,
case study and numerical simulations are performed to verify the effectiveness of proposed schemes.
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1. Introduction

Chaos in many systems is a source of the generation of oscillation. Chaotic syn-
chronization exists in various fields of applications such as economic control system
[1], internet congestion control [2], and secure communication [3]. Since the results
of synchronizing two identical chaotic systems from different initial conditions was
firstly introduced in 1990 [4], the relative researching topics were attracted many
attentions.

The idea of chaotic synchronization of states is to use the states of the drive
system to control the driven system so that the states of the driven system fol-
low the states of the drive system asymptotically. For the state synchronization of
n-dimensional chaotic systems with single control input, there were many studies
to be addressed, for example, [5-11] and the references therein. Synchronization
the Genesio-Tesi type chaotic systems with muti-control inputs were introduced in
[12-14]. However, in these studies [12-14], the redundant control inputs for synchro-
nization are not necessary and cause the structure of control too complicated. In
fact, control problem of chaotic synchronization mentioned in [12-14] can be accom-
plished by only single input control.

In this study, the novel two-level sliding mode control is introduced to achieve the
state synchronization between two the same kind of n-dimensional chaotic systems
in the presence of system uncertainty and external disturbance. The proposed robust
adaptive control law is not required the known bounds of system uncertainties and
external disturbances in prior. The proposed robust adaptive control law associated
with time varying feedback gains can compensate nonlinear dynamics of the syn-
chronous error system. Meanwhile, these feedback gains are not to be determined in
advance but updated by the adaptive rules. In the sense of the Lyapunov stability
theorem, sufficient conditions are provided to guarantee the stable synchronization.
In addition, numerical study of two the same kind of three dimensional Genesio-Tesi
systems is given to verify the effectiveness of proposed schemes.

The rest of the study is organized as follows. State synchronized control problem
of n-dimensional nonlinear chaotic system is proposed section 2. In Section 3, the
concept of two level sliding mode control design is introduced and the procedures of
robust adaptive control law design is provided and proved. In Section 4, case study
and numerical simulations of two the same kind of three dimensional Genesio-Tesi
systems are performed to verify the effectiveness of presented scheme. In the final
section, the conclusions are made.

2. Formulation of the state synchronized control problem

Consider the following n-dimensional nonlinear chaotic system described by:

21:,2’7, 1 ].SZS'I’L—l
LS ) W

Where Z(t) = [ z1(t) 22(t) - z(t) ]T is state vector. It is assumed that



AUTOMATIC TESTING OF FOOD QUALITY 109

the scalar function F(Z(t)) is satisified the global Lipschitz condition. That is,
[F(Z@E)] < po+ Y pilal (2)
i=1

Wherep; > 0, ¢ = 0,1,--- ,n. In the literature, there are many published
chaotic systems belong to the proposed class, such that, Genesio-Tesi system [15]
and Arneodo’s system [16]. In the following, the synchronization between two n-
dimensional the same kind of chaotic systems in (1) are considered, even when the
driven system with single control input is undergoing system uncertainties and ex-
ternal disturbances. First of all, the drive system is defined in (1) and the driven
system is described as follows,

{"ti:$i+1,l<i<n—1 (3)
n = F(X(@)+Af(X(®) +ult) + At)

Where X (t) = [ 21(t) a2(t) -+ xu(t) ]T is the state vevtor, Af(X(t)) € R
is the bounded system uncertainty satisfying 0 < |Af| < By, A(t) € R is the
external disturbance satisfying 0 < |A(¢)| < By, and u(t) is the control input.

The synchronous error states between systems (1) and (3) are defined as follows:

ei(t)zmi(t)—zi(t), izl, e, N (4)

Then, the problem of state synchronization between systems (1) and (3) can be
defined. By taking the time derivatives of (4) along with (1) and (3), the synchronous
error system can be expressed as

{éi—ei+1,1§i§nl (5)
én =F (X)) — F(Z(t)) + Af +u(t) + At)

To this end, it is clear that the problem of state synchronization is replaced
by the equivalence of stabilizing the synchronous error system (5) by applying a
suitable design of the control law u(t). The control goal for the current problem is
to determine the appropriate control law w(t) such that for any initial states of the
synchronous error system (5), states of the synchronous error system converges to
zeros, that is, t1i>1£10 e(t)—0,i=1,--- n.

3. Design of Robust-adaptive Sliding mode Control Law

In the following, the rule of thumb for the robust-adaptive synchronized control
design is introduced. Two basic steps are involved in order to accomplish the state
synchronization between systems (1) and (3). First, two levels of sliding function
are chosen. Then, the adaptive and robust control law is designed for that any
trajectory in phase space of the synchronous error system can be brought to and
stayed in the sliding surface even in the presence of system uncertainty Af(X) and
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external disturbance A(t).

The concept for two levels sliding functions is introduced as follows. The level 1
sliding surface s(t) is the function of n-dimensional error states e;(t), i =1, --- ,n,
where the desired sliding motion is embedded. The level 2 sliding surface o(t) is
formed with the level 1 sliding function s(¢).

The level 1 sliding surface s(t) is chosen as follows.

t n
s(t) = en(t) + / Z cie;(T)dr (6)

0 =1
Where ¢, co,- -, c, are design parameter, which satisfying the polynomial \" +

ep A"l 4+ 4+ ¢; =0 is Herwitz. When the states of the synchronous error system
approaching to and staying in the sliding surface, it means that conditions s(t) = 0
and $(t) = 0 are satisfied. $(t) = 0 can be expressed as

él':eH_l, 1<i1<n

én (t) = - Z?:l Ci€; (t) (7)

(7) can be represented further

E(t) = AE(t) (8)
Where E(t) = [ e1(t) ex(t) -+ en(t) ]T is the error vector and A is the
companion matrix with the coefficients ¢y, ca,--- ,¢p.

The level 2 sliding surface o(t) is defined

t

o(t) = [s())P/ + k / s(r)dr (9)
0

Where k£ > 0 and 1 < p/q < 2, p, q are positive odd integers. For o(¢t) = 0 and
o(t) =0, it can be yield that

o (t) = ks(t) + g[s(t)](p/q)’l.é(t) =0 (10)

For the time ¢, > 0 of the level 1 sliding function s(¢) from initial values reaching

to the terminal sliding surfaceo(t) = 0, the finite time 5, that is taken to travel from
s(ty) # 0 to s(ty +ts) =0, is given by

= p (p/a)—1
ts =ty + ——|s(tr 11
g ) (1)
To this end, it is concluded that the object of control law design is to force
o(t) = 0 and 6(¢t) = 0. Then, conditions s(¢) = 0 and §(¢t) = 0 are satisfied such
that n-dimensional error states e;(t), ¢ =1, --- ,n tend to zeros.
Theorem.
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If the control law w(t) in system (3) is applied as follows:

n

u(t) = = (kg/p) [s(t)]* 777 — | Ko(t) + Y _ Ki(t) lei(t)]| -sign(o(t)  (12)

i=1

Where the s(t) and o(t) are defined in (6) and (9), respectively. sign(e) is the sign
function. The positive and adaptive feedback gains, K(t) and K;(t), i =1,--- ,n
are updated according to the following adaptation algorithms, respectively,

Ko(t) =0 o (6)] [s(6) "7 > 0, ko(0) =0 (13)
Ki(t) =7 les®)] lo@®)] [s)]*/?7 >0, ki(0) =0 (14)
Where ~;, ¢ = 0,1,--- ,n are the positive constants determining the adaptation

process. Then, the level 1 sliding function s(¢) will asymptotically approach to and
stay in the terminal sliding surface o(t) = 0, and then converge to zeros in finite
time. It follows that states of the synchronous error system (7) will asymptoti-
cally approach to and stay in the sliding surface s(¢) = 0. Then, all states of the
synchronous error system converge to zeros and the state synchronization between
systems (1) and (3) can be achieved.

Proof.
The Lyapnnov candidate function is selected to be
A
V() - 23 L - 22 (13
17>
Where K;, i = 0,1,--- ,n are sufficient large positive constants and satisfy the

following inequalities

I§0>po+Bf+Bd>0, (16)
Ki >,0i—|—ci >0, Z:]., ,
Taking the time derivative of (15) along with the solutions of the synchronous
error system (7), the selection of the two level sliding functions (6) and (9), and the
control law (12), it obtains
V=o06+2%0 0%(1( K)K;
<o [ks+ (/@)D (oo + Sy pifedl + X0y crled + AF + A+ u)
+2 > = L(K; - K))K,.
(17)
By substituting (13) to (14) into (17) and with the criterions in (16), i14t yields

v<§|s|“’/q>‘1[f (Ko — po— By — Ba) o] = (K — pi — i) eil |]o]| <0 (18)
1=0
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Therefore, the condition for Lyapunov stability is satisfied. The level 2 sliding
function o(¢) can reach to o(t) = 0 asymptotically and stay in it. Then, the level 1
sliding function s(t) is approaching to zero in the finite time according to (11). It is
induced that the synchronized error states tend to zeros asymptotically.

4. Case study and numerical simulations

In this section, the effectiveness of the proposed adaptive robust control law is
verified. The numerical simulations for two the same kind of three dimensional
Genesio-Tesi systems [15] are performed. In numerical simulations, the fourth-order
Runge-Kutta method is used to solve the system with time step size of 0.0001.

The Genesio-Tesi system has the form represented as follows

21 = Z2
2.'2 = Z3 (19)
i3 = —cz; — bzy — azz + 2%

Where the system parameters are a = 1.2, b = 2.92, ¢ = 6 can perform the
chaotic phenomena [15]. For two Genesio-Tesi systems (1) and (3), the synchronous
error system can be expressed as

él = €2
ég = €3 (20)
é3 = —ce; — beg —aesz + ¢(x1, z1)e; + Af(xy, xo, x3) + A(t) + u(t)

The initial conditions of the drive and the driven systems are chosen (z1(0), 22(0),
(1, =1, 1) and (z1(0), 22(0), z3(0)) = (2, 1, 3), respectively. For the adap-
tive robust control law (12) associated with (6), (9), (13), and (14), the positive
constants are chosen as k = 2, p =9, ¢ = 7, ¢4 =1, ¢ = 3, cg = 2.5
Yo = 71 = 7 = 0.025, 3 = 0.015. It is supposed the system uncertainty is
assumed Af = sin(x1) sin(z2) sin(x3) and the external disturbance is A(t) = cos(t)
in the following numerical simulations.

Time responses of the synchronous error states are depicted in Figure 1. Figure
2 and 3 exhibit the time responses and the trajectories for the two kinds of sliding
functions, respectively. It is shown both s(t) and o(t) converge to zero and the
state synchronization is achieved. In Figure 4, it is demonstrated that the applied
control input is continuous and chattering free in the presence of system uncertainties
and external disturbances. Time response of adaptive feedback gains are shown in
Figure 5. Figure 6 displays time responses of the drive and driven system states,
respectively. It is obviously depicted that state synchronization is accomplished.

23(0))
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Figure 1. Time responses of syn-
chronous error states.
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Figure 2. Time responses for the two
levels of sliding functions.s(t), o(t).
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Figure 3. Trajectories for two levels of
sliding functions.
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Figure 4. Time responses of of the con-
trol input.
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Figure 5. Time responses of adaptive
feedback gains.
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Figure 6. State trajectories of two syn-
chronized Genesio-Tesi systems.
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5. Conclusions

In this study, for achieving state synchronization between two the same kind of
n-dimensional chaotic systems belong to system class (1) in the presence of system
uncertainties and external disturbances, the robust adaptive sliding mode control
law has been addressed. The implementation of the proposed adaptive control law
is not required the known bounds of system uncertainties and external disturbances.
The proposed adaptive control law associated with time varying feedback gains can
compensate nonlinear dynamics of the synchronous error system. Meanwhile, these
feedback gains are not to be determined in advance but updated by the adaptive
rules. In the sense of the Lyapunov stability theorem, sufficient conditions are pro-
vided to guarantee the stable synchronization. In addition, numerical study of two
the same kind of three dimensional Genesio-Tesi systems are given to verify the
effectiveness of proposed schemes.
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